LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节


LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节

仅用于站内搜索,没有排版格式,具体信息请跳转上方微信公众号内链接

来源:量子位|公众号QbitAI
时令发自凹非寺
当我们读到“苹果”“香蕉”“西瓜”这些词,虽然颜色不同、形状不同、味道也不同,但仍会下意识地归为“水果”。
哪怕是第一次见到“火龙果”这个词,也能凭借语义线索判断它大概也是一种水果。
这种能力被称为语义压缩,它让我们能够高效地组织知识、迅速地对世界进行分类。
那问题来了:大型语言模型(LLM)虽然语言能力惊人,但它们在语义压缩方面能做出和人类一样的权衡吗?
为探讨这一问题,图灵奖得主LeCun团队,提出了一种全新的信息论框架。
该框架通过对比人类与LLM在语义压缩中的策略,揭示了两者在压缩效率与语义保真之间的根本差异:
LLM偏向极致的统计压缩,而人类更重细节与语境。
要实证性地研究LLM的表征方式与人类概念结构之间的关系,需要两个关键要素:
稳健的人类概念分类基准
研究团队基于认知科学中的三项经典研究(Rosch1973、1975和McCloskey&Glucksberg1978),构建了一个涵盖1049个项目、34个语义类别的统一基准。
这些数据不仅提供了类别归属信息,还包含人类对各项目“典型性”的评分,反映了人类认知中概念形成的深层结构。
相比现代众包数据,这些经过专家严格设计的数据集更具可信度与解释力,为LLM的类人性评估提供了高保真的比较基础。
多样化的LLM模型选择
为全面评估不同大型语言模型在概念表征上的差异,研究团队选取了30+LLMs(BERT、LlamA、Gemma、Qwen等),参数规模从3亿到720亿不等。
所有模型均从输入嵌入层提取静态词元表示,以贴近人类分类实验中“去上下文”的刺激方式,确保模型和人类的认知基准保持一致,便于公平比较。
为分析LLM与人类在表达和组织语义信息时的差异,研究引入了一个信息论框架。
该框架借鉴了两大经典信息论原理:
速率失真理论:描述压缩效率与信息失真之间的最优权衡;
信息瓶颈原理:关注在压缩表示的同时,最大程度保留与目标相关的信息。
研究发现,LLM的概念分类结果与人类语义分类的对齐程度显著高于随机水平。
这一结果验证了LLM在语义组织方面的基本能力,并为后续更细粒度的语义结构对比奠定了基础。
但是大型语言模型真的理解细节吗?
答案是:LLM难以处理细粒度的语义差异。它们的内部概念结构与人类对类别归属的直觉不相符。
人类典型性判断与LLM余弦相似度之间的斯皮尔曼相关系数较弱且大多数不显著,表明两者在概念表征结构上存在差异。
那LLM和人类在信息压缩与语义保真上存在哪些关键差异呢?
LLM侧重于统计压缩,力求最大程度地减少冗余信息;而人类则更注重适应性和丰富性,强调保持灵活性和上下文的完整性。
这项研究由斯坦福大学与纽约大学联合开展,团队成员均来自这两所高校。
其中,第一作者为斯坦福大学博士后研究员ChenShani。
更让网友震惊的的是,YannLeCun也为此研究的作者之一。
YannLeCun是当今人工智能领域最具影响力的科学家之一,现任Meta(原Facebook)首席人工智能科学家,同时也是纽约大学教授。
LeCun早在1980年代便开始研究神经网络,最著名的贡献是提出了卷积神经网络(CNN)的核心架构——LeNet-5,用于手写数字识别。
该网络是现代深度学习模型的雏形,为后续图像识别和计算机视觉技术的发展奠定了坚实基础。
他与GeoffreyHinton、YoshuaBengio被誉为“深度学习三巨头”,共同推动了深度学习的理论与应用突破。
2018年,三人因在深度学习领域的杰出贡献,荣获了计算机科学领域的最高奖项——图灵奖。
除了技术创新,LeCun还积极推动深度学习技术在工业界的应用,尤其是在Meta,领导团队将人工智能技术应用于大规模系统。
他同时是自监督学习的积极倡导者,认为这是实现通用人工智能(AGI)的关键路径之一。
可以说,LeCun的研究对人工智能技术的演进产生了重要影响。
论文地址:https ://arxiv. org/abs/2505. 17117参考链接:
https ://x. com/ziv_ravid/status/1928118800139841760
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https ://wx. zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https ://wx. zsxq.com/group/454854145828进入。
截止到3月31日”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI2025关于人工智能研究未来研究报告
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
壳牌:2025能源安全远景报告:能源与人工智能(57页)
盖洛普&牛津幸福研究中心:2025年世界幸福报告(260页)
Schwab:2025未来共生:以集体社会创新破解重大社会挑战研究报告(36页)
IMD:2024年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214页)
DS系列专题:DeepSeek技术溯源及前沿探索,50页ppt
联合国人居署:2024全球城市负责任人工智能评估报告:利用AI构建以人为本的智慧城市(86页)
TechUK:2025全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52页)
NAVEXGlobal:2024年十大风险与合规趋势报告(42页)
《具身物理交互在机器人-机器人及机器人-人协作中的应用》122页
2025-2035年人形机器人发展趋势报告53页
EvaluatePharma:2024年全球生物制药行业展望报告:增长驱动力分析(29页)
【AAAI2025教程】基础模型与具身智能体的交汇,350页ppt
Tracxn:2025全球飞行汽车行业市场研究报告(45页)
谷歌:2024人工智能短跑选手(AISprinters):捕捉新兴市场AI经济机遇报告(39页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新170页
美国安全与新兴技术中心:2025CSET对美国人工智能行动计划的建议(18页)
罗兰贝格:2024人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11页)
兰德公司:2025从研究到现实:NHS的研究和创新是实现十年计划的关键报告(209页)
康桥汇世(CambridgeAssociates):2025年全球经济展望报告(44页)
国际能源署:2025迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025全球科研人员人工智能研究报告(38页)
牛津经济研究院:2025TikTok对美国就业的量化影响研究报告:470万岗位(14页)
国际能源署(IEA):能效2024研究报告(127页)
Workday:2025发挥人类潜能:人工智能(AI)技能革命研究报告(20页)
CertiK:Hack3D:2024年Web3. 0安全报告(28页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025亚太地区生成式AI的崛起研究报告:从技术追赶者到全球领导者的跨越(15页)
安联(Allianz):2025新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33页)
IMT:2025具身智能(EmbodiedAI)概念、核心要素及未来进展:趋势与挑战研究报告(25页)
IEEE:2025具身智能(EmbodiedAI)综述:从模拟器到研究任务的调查分析报告(15页)
CCAV:2025当AI接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新132页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024版)(96页)
美国国家科学委员会(NSB):2024年研究与发展-美国趋势及国际比较(51页)
艾昆纬(IQVIA):2025骨科手术机器人技术的崛起白皮书:创新及未来方向(17页)
NPL&Beauhurst:2025英国量子产业洞察报告:私人和公共投资的作用(25页)
IEAPVPS:2024光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65页)
AGI智能时代:2025让DeepSeek更有趣更有深度的思考研究分析报告(24页)
2025军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37页)
华为:2025鸿蒙生态应用开发白皮书(133页
《超级智能战略研究报告》
中美技术差距分析报告2025
欧洲量子产业联盟(QuIC):2024年全球量子技术专利态势分析白皮书(34页)
美国能源部:2021超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60页)
罗马大学:2025超级高铁(Hyperloop):第五种新型交通方式-技术研发进展、优势及局限性研究报告(72页)
兰德公司:2025灾难性网络风险保险研究报告:市场趋势与政策选择(93页)
GTI:2024先进感知技术白皮书(36页)
AAAI:2025人工智能研究的未来报告:17大关键议题(88页)
安联Allianz2025新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025全球洪水风险研究报告:现状、趋势及应对措施(22页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI峰会洞察及建议(19页)
哈佛商业评论:2025人工智能时代下的现代软件开发实践报告(12页)
德安华:全球航空航天、国防及政府服务研究报告:2024年回顾及2025年展望(27页)
奥雅纳:2024塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28页)
HSOAC:2025美国新兴技术与风险评估报告:太空领域和关键基础设施(24页)
Dealroom:2025欧洲经济与科技创新发展态势、挑战及策略研究报告(76页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(GoogleCloud):2025年AI商业趋势白皮书(49页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150页!《DeepSeek大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态-250309(40页)
真格基金:2024美国独角兽观察报告(56页)
璞跃(PlugandPlay):2025未来商业研究报告:六大趋势分析(67页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
未来今日研究所2025年科技趋势报告第18版1000页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024-2025)(117页)
浙江大学:2025语言解码双生花:人类经验与AI算法的镜像之旅(42页)
人形机器人行业:由“外”到“内”智能革命-250306(51页)
大成:2025年全球人工智能趋势报告:关键法律问题(28页)
北京大学:2025年DeepSeek原理和落地应用报告(57页)
欧盟委员会人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命-250226(35页)
RT轨道交通:2024年中国城市轨道交通市场数据报告(188页)
FastMoss:2024年度TikTok生态发展白皮书(122页)
CheckPoint:2025年网络安全报告-主要威胁、新兴趋势和CISO建议(57页)
【AAAI2025教程】评估大型语言模型:挑战与方法,199页ppt
《21世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(VoltaFoundation):2024年全球电池行业年度报告(518页)
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
国际科学理事会:2025为人工智能做好国家研究生态系统的准备-2025年战略与进展报告(英文版)(118页)
光子盒:2025全球量子计算产业发展展望报告(184页)
奥纬论坛:2025塑造未来的城市研究报告:全球1500个城市的商业吸引力指数排名(124页)
FutureMatters:2024新兴技术与经济韧性:日本未来发展路径前瞻报告(17页)
《人类与人工智能协作的科学与艺术》284页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115页
《2025年技术展望》56页slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理-250224(33页)
Gartner:2025网络安全中的AI:明确战略方向研究报告(16页)
北京大学:2025年DeepSeek系列报告-提示词工程和落地场景(86页)
北京大学:2025年DeepSeek系列报告-DeepSeek与AIGC应用(99页)
CIC工信安全:2024全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42页)
中科闻歌:2025年人工智能技术发展与应用探索报告(61页)
AGI智能时代:2025年Grok-3大模型:技术突破与未来展望报告(28页)
上下滑动查看更多


文章作者: ZejunCao
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 ZejunCao !
  目录