复杂空间指令也能秒懂?RoboRefer 让机器人理解推理空间,开放世界也能精准行动!
仅用于站内搜索,没有排版格式,具体信息请跳转上方微信公众号内链接
来源:机器之心
本文的主要作者来自北京航空航天大学、北京大学和北京智源人工智能研究院。本文的第一作者为北京航空航天大学硕士生周恩申,主要研究方向为具身智能和多模态大模型。本文的共一作者兼项目负责人为北京智源研究院研究员迟程。本文的通讯作者为北京航空航天大学副教授盛律和北京大学计算机学院研究员、助理教授仉尚航。
机器人走出实验室、进入真实世界真正可用,远比想象中更复杂。现实环境常常杂乱无序、物体种类繁多、灵活多变,远不像实验室那样干净、单一、可控。
想象一下,你正在餐厅吃饭,身边有个服务机器人。你对它说:「把第二列最远的黄色寿司盘,放到离我最近的寿司和酱油碟之间的空位上。」(左图)又或者,你希望它「拿起最左边、饮料logo正对的苹果,放到最近的桌子上,并与之前的苹果排成一排、间距一致。」(右图)
这些听起来是我们日常再熟悉不过的指令,其实是一个典型空间指代(SpatialReferring)任务。简单来说,就是让机器人通过「最远」「第二列」「等间距」「正对着」这类空间关系,搞清楚要抓哪个对象、放在哪里、或者走向哪个位置。
听着简单,做起来却不容易。哪怕是目前最强大、最先进的多模态大模型,也依然难以准确理解复杂的三维场景,并根据指令动态推理出正确的交互位置。这是因为空间指代任务,背后其实包含了两个维度的挑战:
单步空间理解:机器人得先看懂世界。这要求模型能够准确识别物体的空间属性(比如位置、朝向)以及它们之间的空间关系(比如远近、方向)。这是空间指代任务的基础,大部分研究目前还停留在这一层。
多步空间推理:真正的挑战来了:面对一连串复杂的空间关系约束,机器人不仅要理解,还要逐步推理、动态判断,灵活应对各种开放世界中各种各样的空间关系组合。这种能力对于实现真正的空间指代至关重要,但目前仍然是一个被严重低估和不足探索的方向。
为了破解空间指代的难题,北京航空航天大学、北京大学与北京智源人工智能研究院联合提出了一个具备三维空间理解推理能力的多模态大模型——RoboRefer。这个模型不仅通过全参数微调(SFT),实现了对空间信息的精准理解,还通过强化学习微调(RFT),大幅提升了推理与泛化能力,最终实现开放世界的空间指代。
论文链接:https ://arxiv. org/pdf/2506. 04308
论文标题:RoboRefer:TowardsSpatialReferringwithReasoninginVision-LanguageModelsforRobotics
项目主页:https ://zhoues. github.io/RoboRefer
代码仓库:https ://github. com/Zhoues/RoboRefer
数据链接:https ://huggingface. co/datasets/JingkunAn/RefSpatial
评测链接:https ://huggingface. co/datasets/BAAI/RefSpatial-Bench
SFT训练下的RoboRefer在空间理解任务中达到了89. 6%的平均成功率,刷新了当前最先进水平。而在研究者提出的高难度空间指代任务评测基准RefSpatial-Bench上,RFT训练后的RoboRefer更是领先所有其他模型,比Gemini-2. 5-Pro高出17. 4%的平均准确率,优势显著。
更重要的是,RoboRefer并非「纸上谈兵」。它可以灵活集成到不同类型的机器人上,比如UR5机械臂、G1仿人机器人等,实现对现实世界中复杂、动态、多步骤任务的精准执行,真正让机器人「听得懂、看得清、动得准」。
RoboRefer是什么
RoboRefer是一个具备三维空间理解与推理能力的多模态大模型,拥有独立的图像编码器和深度图编码器,其不仅能回答各种空间感知类问答,无论是「这个物体离我有多远?」这样的定量问题,还是「哪个物体在左边?」这样的定性问题;更厉害的是,它还能基于多种空间关系(比如物体的位置和朝向),进行复杂的组合式推理,最终准确定位需要交互的位置。
比如,面对一个指令:「把这个物体放在笔筒和键盘的中间,水瓶的logo要正对着你。」RoboRefer不仅能理解这句自然语言的空间逻辑,还能在真实三维场景中,找到唯一正确的位置来完成任务。
RoboRefer的核心是什么
为什么相较于以往的方法,RoboRefer不仅可以精确的感知空间,而且又可以根据多个空间关系组合泛化推理出交互的位置呢?其关键因素在于以下几点:
SFT增强空间感知能力,RFT搭配过程奖励提升泛化推理能力
当前多模态大模型在2D预训练阶段缺乏对空间关系的深入理解,为了提升模型的单步空间理解能力,研究人员引入了一个独立的深度编码器,使模型能够更有效地感知和利用三维信息,并通过全参数微调(SFT)进行训练。
尽管SFT使用了各种空间感知和推理数据,但模型更倾向于记忆答案,而不是泛化到新的空间约束条件。为了解决这一问题,研究者进一步引入了基于GRPO的强化学习微调。
值得一提的是,团队不仅关注结果导向的奖励(outcome-basedreward),还创新性地设计了基于过程的奖励函数(processrewardfunctions),这些函数能够感知中间推理过程的质量,从而提升模型多步空间指代任务中的推理精度。最终,模型增强了显式多步推理能力,实现了开放世界的空间指代任务。
提出RefSpatial数据集,教一个多模态大模型从0到1学会空间指代
为了支持前述的SFT和RFT训练,研究团队构建了一个大规模、高质量的数据集——RefSpatial,具有以下几个核心特点:
精细标注:每个物体都配有层级式描述,从「杯子」这类种类类别,到像「左数第三个杯子」「最靠近摄像头的杯子」这样的精确空间指代,确保在复杂场景中也能清晰用文字表述。
多维推理:数据集不仅标注了目标,还附带详细的多步推理过程(最高有5步),为复杂空间指代提供支持。
高质量筛选:数据经过严格筛选,确保标注准确、语义清晰。
规模庞大:共包含250万个样本、2000万个问答对,数据量是同类数据集的两倍。
场景丰富:覆盖室内外环境,涵盖多种日常交互情境,并整合了31种空间关系(对比以往最多15种)。
易于扩展:支持从多种来源生成空间指代数据,包括2D图像、3D视频(含边界框)和模拟资产,具备高度扩展性。
RoboRefer到底有多厉害
单步空间理解评测
SFT训练后的RoboRefer在各种空间理解任务中达到了89. 6%的平均成功率,取得了当前最先进水平。
多步空间指代评测
RFT训练后的RoboRefer在已有的机器人指代榜单上依旧超越现有方法,在研究者们提出的高难度空间指代任务评测基准RefSpatial-Bench上,其更是领先所有其他模型,比Gemini-2. 5-Pro高出17. 4%的平均准确率。
下面展示一些RoboRefer与其它模型输出结果的可视化样例:
仿真与真机实验
在空间操控的机械臂仿真评测中,RoboRefer的表现远超现有的视觉-语言-动作(VLA)系统。不仅在模拟环境中成功率遥遥领先,面对开放世界中的多步推理与复杂指代任务,唯有RoboRefer能够完成!
更多的实验结果,可视化展示(包括更多的杂乱场景下的真机Demo视频的空间指代结果)详见论文和主页!
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https ://wx. zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https ://wx. zsxq.com/group/454854145828进入。
截止到3月31日”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI2025关于人工智能研究未来研究报告
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
壳牌:2025能源安全远景报告:能源与人工智能(57页)
盖洛普&牛津幸福研究中心:2025年世界幸福报告(260页)
Schwab:2025未来共生:以集体社会创新破解重大社会挑战研究报告(36页)
IMD:2024年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214页)
DS系列专题:DeepSeek技术溯源及前沿探索,50页ppt
联合国人居署:2024全球城市负责任人工智能评估报告:利用AI构建以人为本的智慧城市(86页)
TechUK:2025全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52页)
NAVEXGlobal:2024年十大风险与合规趋势报告(42页)
《具身物理交互在机器人-机器人及机器人-人协作中的应用》122页
2025-2035年人形机器人发展趋势报告53页
EvaluatePharma:2024年全球生物制药行业展望报告:增长驱动力分析(29页)
【AAAI2025教程】基础模型与具身智能体的交汇,350页ppt
Tracxn:2025全球飞行汽车行业市场研究报告(45页)
谷歌:2024人工智能短跑选手(AISprinters):捕捉新兴市场AI经济机遇报告(39页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新170页
美国安全与新兴技术中心:2025CSET对美国人工智能行动计划的建议(18页)
罗兰贝格:2024人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11页)
兰德公司:2025从研究到现实:NHS的研究和创新是实现十年计划的关键报告(209页)
康桥汇世(CambridgeAssociates):2025年全球经济展望报告(44页)
国际能源署:2025迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025全球科研人员人工智能研究报告(38页)
牛津经济研究院:2025TikTok对美国就业的量化影响研究报告:470万岗位(14页)
国际能源署(IEA):能效2024研究报告(127页)
Workday:2025发挥人类潜能:人工智能(AI)技能革命研究报告(20页)
CertiK:Hack3D:2024年Web3. 0安全报告(28页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025亚太地区生成式AI的崛起研究报告:从技术追赶者到全球领导者的跨越(15页)
安联(Allianz):2025新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33页)
IMT:2025具身智能(EmbodiedAI)概念、核心要素及未来进展:趋势与挑战研究报告(25页)
IEEE:2025具身智能(EmbodiedAI)综述:从模拟器到研究任务的调查分析报告(15页)
CCAV:2025当AI接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新132页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024版)(96页)
美国国家科学委员会(NSB):2024年研究与发展-美国趋势及国际比较(51页)
艾昆纬(IQVIA):2025骨科手术机器人技术的崛起白皮书:创新及未来方向(17页)
NPL&Beauhurst:2025英国量子产业洞察报告:私人和公共投资的作用(25页)
IEAPVPS:2024光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65页)
AGI智能时代:2025让DeepSeek更有趣更有深度的思考研究分析报告(24页)
2025军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37页)
华为:2025鸿蒙生态应用开发白皮书(133页
《超级智能战略研究报告》
中美技术差距分析报告2025
欧洲量子产业联盟(QuIC):2024年全球量子技术专利态势分析白皮书(34页)
美国能源部:2021超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60页)
罗马大学:2025超级高铁(Hyperloop):第五种新型交通方式-技术研发进展、优势及局限性研究报告(72页)
兰德公司:2025灾难性网络风险保险研究报告:市场趋势与政策选择(93页)
GTI:2024先进感知技术白皮书(36页)
AAAI:2025人工智能研究的未来报告:17大关键议题(88页)
安联Allianz2025新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025全球洪水风险研究报告:现状、趋势及应对措施(22页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI峰会洞察及建议(19页)
哈佛商业评论:2025人工智能时代下的现代软件开发实践报告(12页)
德安华:全球航空航天、国防及政府服务研究报告:2024年回顾及2025年展望(27页)
奥雅纳:2024塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28页)
HSOAC:2025美国新兴技术与风险评估报告:太空领域和关键基础设施(24页)
Dealroom:2025欧洲经济与科技创新发展态势、挑战及策略研究报告(76页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(GoogleCloud):2025年AI商业趋势白皮书(49页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150页!《DeepSeek大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态-250309(40页)
真格基金:2024美国独角兽观察报告(56页)
璞跃(PlugandPlay):2025未来商业研究报告:六大趋势分析(67页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
未来今日研究所2025年科技趋势报告第18版1000页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024-2025)(117页)
浙江大学:2025语言解码双生花:人类经验与AI算法的镜像之旅(42页)
人形机器人行业:由“外”到“内”智能革命-250306(51页)
大成:2025年全球人工智能趋势报告:关键法律问题(28页)
北京大学:2025年DeepSeek原理和落地应用报告(57页)
欧盟委员会人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命-250226(35页)
RT轨道交通:2024年中国城市轨道交通市场数据报告(188页)
FastMoss:2024年度TikTok生态发展白皮书(122页)
CheckPoint:2025年网络安全报告-主要威胁、新兴趋势和CISO建议(57页)
【AAAI2025教程】评估大型语言模型:挑战与方法,199页ppt
《21世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(VoltaFoundation):2024年全球电池行业年度报告(518页)
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
国际科学理事会:2025为人工智能做好国家研究生态系统的准备-2025年战略与进展报告(英文版)(118页)
光子盒:2025全球量子计算产业发展展望报告(184页)
奥纬论坛:2025塑造未来的城市研究报告:全球1500个城市的商业吸引力指数排名(124页)
FutureMatters:2024新兴技术与经济韧性:日本未来发展路径前瞻报告(17页)
《人类与人工智能协作的科学与艺术》284页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115页
《2025年技术展望》56页slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理-250224(33页)
Gartner:2025网络安全中的AI:明确战略方向研究报告(16页)
北京大学:2025年DeepSeek系列报告-提示词工程和落地场景(86页)
北京大学:2025年DeepSeek系列报告-DeepSeek与AIGC应用(99页)
CIC工信安全:2024全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42页)
中科闻歌:2025年人工智能技术发展与应用探索报告(61页)
AGI智能时代:2025年Grok-3大模型:技术突破与未来展望报告(28页)
上下滑动查看更多