神经网络不要梯度?牛津团队的NoProp干掉反向传播


神经网络不要梯度?牛津团队的NoProp干掉反向传播

仅用于站内搜索,没有排版格式,具体信息请跳转上方微信公众号内链接

来源:大数据文摘出品
今天要聊的是牛津大学的学者发布的一篇论文:
———NoProp:一种完全不靠前向/反向传播的神经网络训练方法。
图注:论文地址:
https ://arxiv. org/pdf/2503. 24322
换句话说,就是深度学习训练居然还能不用forward/backward?
读完之后,发现作者真敢想,也真敢做,甚至还在MNIST和CIFAR-10/100上干到了SOTA级别。
01传统深度学习的“老路”
现在主流的神经网络训练,基本都靠反向传播(back-propagation)。
你从输入跑一遍forward,输出结果和标签比一比,算出损失,再把误差信号沿着神经网络一层层反传下去,调整每一层的参数——这就是经典BP算法的全流程。
图注:反向传播可视化,图片来自于《AIIn100Images》。
它简单粗暴,好用到称霸深度学习几十年。但BP其实也有一堆槽点:
完全不符合生物神经元的工作方式,太“机械”了
要存一堆中间激活,内存压力大
梯度要一层层传,想多机/分布式训练很难搞
还容易出现梯度消失、灾难性遗忘等毛病
所以,其实很多年都有人想另辟蹊径,不靠BP来训练网络。但一直没啥特别靠谱的“新流派”能挑战BP的地位。
02NoProp:彻底不要forward和backward
NoProp,野心很大:既不要反向传播,也不要传统的前向传播。
它的核心思想其实很“反直觉”:每一层都自己学会“去噪”一个被加了噪声的目标(标签),且每一层的训练都是独立的,完全不需要梯度从头传到尾,也不需要逐层前向推理。
据说,灵感来自扩散模型和flowmatching(没错,就是最近AI图像领域炙手可热的扩散流派);本质上,每一层都是一个“去噪专家”,收到一个被加噪的标签和输入后,自己想办法把标签还原回来;另外,训练时直接喂每层加噪的“假标签”,让它自己去学还原;而推理时,把上一层的输出当成“新噪声”,继续去噪,直到最后一层输出
03技术细节
技术细节大概有4步,
一:数据处理:每个样本(x,y),先把y(标签)映射到一个高维embedding空间,比如one-hot或learnableembedding。
二:加噪声:按照固定或可学习的噪声schedule,给标签embedding加上高斯噪声,制造一个“带噪标签”。
三:每层单独训练:设计一套动态块,每层动态块都拿到(带噪标签,图片x)输出去噪后的标签embedding;损失函数是预测的embedding和“干净标签”之间的L2距离,加上分类损失和KL散度正则
四:推理时流程:从纯噪声出发,反复用每层动态块去噪,最后一层输出的embedding送给softmax线性层,得到分类结果。
这种做法,和传统扩散模型的“反噪”过程很像,但目标不是还原图像,而是还原标签。
04. 不靠BP,效果到底咋样?
作者直接在MNIST、CIFAR-10、CIFAR-100上正面对比了NoProp和主流方法。结果是:NoProp在MNIST上能和BP打个平手,CIFAR-10/100也极具竞争力。
如上图,NoProp-DT直接干平甚至略超传统BP,远超以往“无反向传播”方法。另外,内存消耗也更低,训练更容易分布式/并行;连续时间版本(NoProp-CT、NoProp-FM)在CIFAR-10/100上也比主流ODE方法表现更高效。
NoProp根本不学“分层抽象表示”——每层的“表示”都是用户指定的(比如高斯加噪的标签embedding),它只管把噪声还原成标签,不去学什么“从低到高的抽象特征”。
其实,这就带来一个问题:“分层抽象表示”真的是深度学习不可或缺的前提吗?NoProp的实验表明:只要标签embedding设计得好,不学feature也能干正事。
有兴趣的朋友可以看原文
(https ://arxiv. org/pdf/2503. 24322),
NoProp的创新点和实验设计都非常细致,也许这条“去BP化”的路,能给AI带来不一样的想法。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https ://wx. zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https ://wx. zsxq.com/group/454854145828进入。
截止到3月31日”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI2025关于人工智能研究未来研究报告
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
壳牌:2025能源安全远景报告:能源与人工智能(57页)
盖洛普&牛津幸福研究中心:2025年世界幸福报告(260页)
Schwab:2025未来共生:以集体社会创新破解重大社会挑战研究报告(36页)
IMD:2024年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214页)
DS系列专题:DeepSeek技术溯源及前沿探索,50页ppt
联合国人居署:2024全球城市负责任人工智能评估报告:利用AI构建以人为本的智慧城市(86页)
TechUK:2025全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52页)
NAVEXGlobal:2024年十大风险与合规趋势报告(42页)
《具身物理交互在机器人-机器人及机器人-人协作中的应用》122页
2025-2035年人形机器人发展趋势报告53页
EvaluatePharma:2024年全球生物制药行业展望报告:增长驱动力分析(29页)
【AAAI2025教程】基础模型与具身智能体的交汇,350页ppt
Tracxn:2025全球飞行汽车行业市场研究报告(45页)
谷歌:2024人工智能短跑选手(AISprinters):捕捉新兴市场AI经济机遇报告(39页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新170页
美国安全与新兴技术中心:2025CSET对美国人工智能行动计划的建议(18页)
罗兰贝格:2024人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11页)
兰德公司:2025从研究到现实:NHS的研究和创新是实现十年计划的关键报告(209页)
康桥汇世(CambridgeAssociates):2025年全球经济展望报告(44页)
国际能源署:2025迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025全球科研人员人工智能研究报告(38页)
牛津经济研究院:2025TikTok对美国就业的量化影响研究报告:470万岗位(14页)
国际能源署(IEA):能效2024研究报告(127页)
Workday:2025发挥人类潜能:人工智能(AI)技能革命研究报告(20页)
CertiK:Hack3D:2024年Web3. 0安全报告(28页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025亚太地区生成式AI的崛起研究报告:从技术追赶者到全球领导者的跨越(15页)
安联(Allianz):2025新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33页)
IMT:2025具身智能(EmbodiedAI)概念、核心要素及未来进展:趋势与挑战研究报告(25页)
IEEE:2025具身智能(EmbodiedAI)综述:从模拟器到研究任务的调查分析报告(15页)
CCAV:2025当AI接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新132页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024版)(96页)
美国国家科学委员会(NSB):2024年研究与发展-美国趋势及国际比较(51页)
艾昆纬(IQVIA):2025骨科手术机器人技术的崛起白皮书:创新及未来方向(17页)
NPL&Beauhurst:2025英国量子产业洞察报告:私人和公共投资的作用(25页)
IEAPVPS:2024光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65页)
AGI智能时代:2025让DeepSeek更有趣更有深度的思考研究分析报告(24页)
2025军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37页)
华为:2025鸿蒙生态应用开发白皮书(133页
《超级智能战略研究报告》
中美技术差距分析报告2025
欧洲量子产业联盟(QuIC):2024年全球量子技术专利态势分析白皮书(34页)
美国能源部:2021超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60页)
罗马大学:2025超级高铁(Hyperloop):第五种新型交通方式-技术研发进展、优势及局限性研究报告(72页)
兰德公司:2025灾难性网络风险保险研究报告:市场趋势与政策选择(93页)
GTI:2024先进感知技术白皮书(36页)
AAAI:2025人工智能研究的未来报告:17大关键议题(88页)
安联Allianz2025新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025全球洪水风险研究报告:现状、趋势及应对措施(22页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI峰会洞察及建议(19页)
哈佛商业评论:2025人工智能时代下的现代软件开发实践报告(12页)
德安华:全球航空航天、国防及政府服务研究报告:2024年回顾及2025年展望(27页)
奥雅纳:2024塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28页)
HSOAC:2025美国新兴技术与风险评估报告:太空领域和关键基础设施(24页)
Dealroom:2025欧洲经济与科技创新发展态势、挑战及策略研究报告(76页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(GoogleCloud):2025年AI商业趋势白皮书(49页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150页!《DeepSeek大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态-250309(40页)
真格基金:2024美国独角兽观察报告(56页)
璞跃(PlugandPlay):2025未来商业研究报告:六大趋势分析(67页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
国际电工委员会(IEC):2025智能水电技术与市场展望报告(90页)
RWS:2025智驭AI冲击波:人机协作的未来研究报告(39页)
未来今日研究所2025年科技趋势报告第18版1000页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024-2025)(117页)
浙江大学:2025语言解码双生花:人类经验与AI算法的镜像之旅(42页)
人形机器人行业:由“外”到“内”智能革命-250306(51页)
大成:2025年全球人工智能趋势报告:关键法律问题(28页)
北京大学:2025年DeepSeek原理和落地应用报告(57页)
欧盟委员会人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命-250226(35页)
RT轨道交通:2024年中国城市轨道交通市场数据报告(188页)
FastMoss:2024年度TikTok生态发展白皮书(122页)
CheckPoint:2025年网络安全报告-主要威胁、新兴趋势和CISO建议(57页)
【AAAI2025教程】评估大型语言模型:挑战与方法,199页ppt
《21世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(VoltaFoundation):2024年全球电池行业年度报告(518页)
斯坦福:2025斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191页)
国际科学理事会:2025为人工智能做好国家研究生态系统的准备-2025年战略与进展报告(英文版)(118页)
光子盒:2025全球量子计算产业发展展望报告(184页)
奥纬论坛:2025塑造未来的城市研究报告:全球1500个城市的商业吸引力指数排名(124页)
FutureMatters:2024新兴技术与经济韧性:日本未来发展路径前瞻报告(17页)
《人类与人工智能协作的科学与艺术》284页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115页
《2025年技术展望》56页slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理-250224(33页)
Gartner:2025网络安全中的AI:明确战略方向研究报告(16页)
北京大学:2025年DeepSeek系列报告-提示词工程和落地场景(86页)
北京大学:2025年DeepSeek系列报告-DeepSeek与AIGC应用(99页)
CIC工信安全:2024全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42页)
中科闻歌:2025年人工智能技术发展与应用探索报告(61页)
AGI智能时代:2025年Grok-3大模型:技术突破与未来展望报告(28页)
上下滑动查看更多


文章作者: ZejunCao
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 ZejunCao !
  目录